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The geometric-arithmetic index is another topological index was defined as 2( ) uv E
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, in which ε(u) is the eccentricity 

of vertex u. The goal of this paper is to further the study of the GA4 index. 
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1. Introduction 
 
Mathematical chemistry is a branch of theoretical 

chemistry for discussion and prediction of the molecular 
structure using mathematical methods without necessarily 
referring to quantum mechanics [1-3]. Chemical graph 
theory is a branch of mathematical chemistry which 
applies graph theory to mathematical modeling of 
chemical phenomena [4]. This theory had an important 
effect on the development of the chemical sciences. 
Nowadays hundreds of researchers work in this area 
producing thousands articles annually. 

A molecular graph is a simple graph such that its 
vertices correspond to the atoms and the edges to the 
bonds. Note that hydrogen atoms are often omitted. By 
IUPAC terminology, a topological index is a numerical 
value associated with chemical constitution purporting for 
correlation of chemical structure with various physical 
properties, chemical reactivity or biological activity [5-
11]. 

A graph is a collection of points and lines connecting 
a subset of them. The points and lines of a graph also 
called vertices and edges of the graph, respectively. If e is 
an edge of G, connecting the vertices u and v, then we 
write e = uv and say "u and v are adjacent". A connected 
graph is a graph such that there is a path between all pairs 
of vertices.  

Let ∑ be the class of finite graphs. A topological index 
is a function Top from ∑ into real numbers with this 
property that Top(G) = Top(H), if G and H are isomorphic. 
Obviously, the number of vertices and the number of edges 
are topological index. The Wiener index is the first 
reported distance based topological index and is defined as 
half sum of the distances between all the pairs of vertices 
in a molecular graph. If , ( )x y V G∈  then the distance 

( , )Gd x y between x and y is defined as the length of any 
shortest path in G connecting x and y. For a vertex u of 
V(G) its eccentricity ( )G uε  is the largest distance 
between u and any other vertex v of G, 

( )( ) max ( , )G v V G Gu d u vε ∈= . The maximum 
eccentricity over all vertices of G is called the diameter of 
G and denoted by D(G). The eccentric connectivity index 

( )Gξ  of a graph G is defined as 
 

( )

( ) deg ( ) ( )G G
u V G

G u uξ ε
∈

= ∑ . 

Where, deg ( )G u  denotes the degree of vertex u in G, i. 
e., the number of its neighbors in G.  

The Zagreb indices have been introduced more than 
thirty years ago by Gutman and Trinajestic [1]. They are 
defined as: 

 
( )2

1
( )

( ) deg ( )G
v V G

M G v
∈

= ∑  and 
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uv E G
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Now we define a new version of Zagreb indices as 
follows: 

 

1

*

( )

( ) ( ) ( )
uv E G

M G u v
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= +∑ ε ε  and 

*
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( )
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It is easy to see that for every connected graph G, 

*
2 ( ) ( )M G G= ξ .  
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A class of geometric–arithmetic topological indices 

may be defined as 
2

 
u v

uv Egeneral
u v

Q Q
GA

Q Q∈= ∑
+

, where 

Qu is some quantity that in a unique manner can be 
associated with the vertex u of the graph G, see [13]. The 
first member of this class was considered by Vukicevic 
and Furtula [14], by setting Qu to be the 

 

2( ) uv E
dudvGA G

du dv∈= ∑
+

, 

 
in which degree of vertex u denoted by du. The second 
member of this class was considered by Fath-Tabar et al. 
[15] by setting Qu to be the number nu of vertices of G 
lying closer to the vertex u than to the vertex v for the edge 
uv of the graph G: 

2

2
( ) u v

uv E
u v

n n
GA G

n n∈= ∑
+

. 

The third member of this class was considered by Bo 
Zhou et al. [16] by setting Qu to be the number mu of edges 
of G lying closer to the vertex u than to the vertex v for the 
edge uv of the graph G: 

 

3

2
( ) u v

uv E
u v
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GA G

m m∈= ∑
+

. 

 
Here, we define the forth member of this class as 

follows: 

4
2 ε( )ε( )

( )
ε( ) ε( )uv E

u v
GA G

u v∈= ∑
+

, 

 
in which ε( )u  denote to the eccentricity of vertex u. The 
goal of this paper is computing some bounds for GA4 
index. Throughout this paper our notation is standard and 
mainly taken from standard books of graph theory [18-23]. 
All graphs considered in this paper are simple and 
connected. 
 
 

2. Results and discussions 
 
In this section we first compute some bounds for GA4 

index. Next we introduce the conception of transitive and 
edge-transitive acting on vertices of graph G. Finally by 
using this definition and some Lemmas we compute the 
GA4 index of hypercube graph.  

Theorem 1. Let G = (V, E) be a graph. Then 
 

*
*2

4 2*
1

2 ( ) 2( ) ( )
( ) 3

M G GA G M G
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≤ ≤ . 

 

Proof. It is easy to see that for every e = uv in E(G), 
ε( ) ε( ) 3u v+ ≥ . By the definition of GA4 index we have 
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On the other hand,  
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This completes the proof. 

 
Theorem 2.  
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An automorphism of the graph G = (V, E) is a 

bijection σ  on V which preserves the edge set e, i. e., if e 
= uv is an edge, then σ( ) σ( )σ( )e u v=  is an edge of E. 
Here the image of vertex u is denoted by σ( )u . The set of 
all automorphisms of G under the composition of 
mappings forms a group which is denoted by Aut(G). 
Aut(G) acts transitively on V if for any vertices u and v in 
V there is α ( )Aut G∈  such that α( )u v= . Similarly G 
= (V, E) is called edge-transitive graph if for any two 
edges e1 = uv and e2 = xy in E there is an element 
β ( )Aut G∈  such that 1 2β( )e e=  where 

1β( ) β( )β( )e u v= . Let G = (V, E) be a graph. If Aut(G) 
acts edge-transitively on V, then we have the following 
lemma: 

Lemma 3. 4
ε( )ε( )

( ) 2 | |
ε( ) ε( )

u v
GA G E

u v
=

+
, for 

every ( )e uv E G= ∈ . 

Lemma 4. *
2 ( ) | | ε( )ε( ).M G E u v= , for every 

( )e uv E G= ∈ . 
Example 5. Let Sn be the star graph with n + 1 

vertices. It is easy to see that Sn is edge- transitive. So we 
have:  
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4
2( ) 2
3nGA S n= × . 

Fullerenes are molecules in the form of polyhedral 
closed cages made up entirely of n three coordinate carbon 
atoms and having 12 pentagonal and (n/2 - 10) hexagonal 
faces, where n is equal or greater than 20. Hence, the 
smallest fullerene, C20, (n = 20) has 12 pentagons and its 
point groups, is well known to be Ci. In the following 
example we compute the GA4 index of C20. 

Example 6. Consider the fullerene graph C20 shown 
in Fig. 1. It is easy to see C20 is edge transitive. 
Furthermore, because C20 is vertex transitive so by 
computing values of ε( )u  and ε( )v  we have, 
ε( ) ε( ) 5u v= = . In the other word |E| = 30 and 

4 20( ) 30.GA C =  
In the general we have the following theorem without 

proof: 
Theorem 7. Let G be a graph in which, Aut(G) acts 

both edge and vertex-transitively on V. Then 

4 ( ) | ( ) | .GA G E G=  
 

u v

 
 

Fig. 1. The graph of fullerene C20. 
 

The fullerene C20 is the only edge transitive fullerene. 
So it is important how to compute GA4 index for the case 
which G is not transitive graph. One can apply the 
following Lemma for this case: 

Lemma 8. Let G = (V, E) be a graph. If Aut(G) on V 
has orbits Ei, 1 ≤ i ≤ s, where ei=uivi is an edge of G. then: 

 
*
2

1
( ) | | ε( )ε( )

s

i i i
i

M G E u v
=

= ∑  and 

4
1

ε( )ε( )( ) 2 | |
ε( ) ε( )

s
i i

i
i i i

u vGA G E
u v=

= ∑
+

. 

Proof. The values of ε(u) and ε(v) for every ie E∈  
are equal. So,. it is enough to compute ε(ui) and ε(vi) for ei 
= uivi (1 ≤ i ≤ s). 

A hypercube define as follows: 
The vertex set of the hypercube Hn consist of all n-

tuples b1b2…bn with {0,1}ib ∈ . Two vertices are 
adjacent if the corresponding tuples differ in precisely one 
place. Darafsheh20 proved Hn is vertex and edge transitive. 
We use of this result and we have the following theorems 
without proof: 

Theorem 9. * 3 1
2 ( ) | | .2 .n

nM H E n −= =  
 
Theorem 10. 1

4 ( ) | | .2 .n
nGA H E n −= =  
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